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Abstract

The authors review the major biological, biochemical, and molecular characters that are used
to distinguish the sevenTrichinella species (T. spiralis, T. nativa, T. britovi, T. pseudospiralis,
T. murrelli, T. nelsoni, T. papuae) and three genotypes whose taxonomic status is yet uncertain
(T-6, T-8, T-9). A comparison of host specificity, morphology, reproductive abilities, nurse cell de-
velopment and freeze resistance is presented, along with useful biochemical and molecular markers.
Finally, this information is used to construct a diagnostic key for the species. A phylogenetic clas-
sification of the species is needed. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

From the time of the discovery ofTrichinella in 1835 until the middle of the next century,
it was commonly assumed that all trichinellosis was caused by a single species,Trichinella
spiralis (Owen, 1835). This nematode was discovered by James Paget and Richard Owen
in 1835 in the muscles of human cadavers in London and by Joseph Leidy in 1846 in the
muscles of swine in Philadelphia (Gould, 1970). More than a century later,T. spiralishad
been reported from more than 100 different naturally or experimentally infected mammalian
hosts and was believed to be a single species with low host specificity and spread around
the world with the movement of domestic swine. The pivotal events that led eventually
to the current taxonomy ofTrichinella were the experimental attempts to infect labora-
tory rodents and pigs with isolates from wild animals. The experimental observations of
Nelson and Mukundi (1963) and Nelson et al. (1966) revealed marked strain differences
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among geographical isolates ofTrichinella. They observed that isolates with high infectiv-
ity for rats were also highly infective for domestic swine (Sus scrofa), while isolates such
as those from the Kenyan bush pig (Potamocherus porcus) and the Alaskan bear (Ursus
arctos) had low infectivity for both rats and pigs. This contradicted the widely held dogma
that T. spiralis had little or no host specificity among mammals. Subsequently, Gretillat
and Vassiliades (1968) and Kruger et al. (1969) reported similar results from comparative
infection studies in pigs and dogs with West African and South African wild animal iso-
lates. Kozar and Kozar (1965) carried out detailed host infectivity studies onTrichinella
isolates of a “laboratory strain” (from Polish pigs) and the isolate from Kenya (Nelson and
Mukundi, 1963). Again, the Kenyan isolate exhibited much lower infectivity for mice than
the pig isolate. However, they observed some changes in isolate infectivity after passages
through laboratory mice. Similar observations were reported by Arakawa and Todd (1971).
These observations contributed to the inclination of many workers in this field to regard
the differences observed in different geographical and host species isolates ofT. spiralis
as a result of differences in methods and hosts used by individual investigators (Zimoroi,
1963), and a reluctance to consider that experimental differences reflected distinct and con-
sistent genetic differences. The absence of clear morphological distinctions among isolates
with different host infectivities also hindered alternative proposals. Host infectivity results
did, however, raise two important questions regarding the systematics and epidemiology of
Trichinella: (1) what are the significant “biological variants” in sylvatic hosts with regard
to the domestic cycle of trichinellosis (infectivity for farm swine), and (2) does the “pig
strain” adapt to wild animals, at a cost of its infectivity for domestic pigs and rats? These
issues helped to stimulate greater interest in the epidemiology and genetics ofTrichinella
spp. The year 1972 proved especially momentus for the systematics of this genus, including
the description of a new, very distinct, non-encapsulating, bird-infecting species,Trichinella
pseudospiralis(Garkavi, 1972) and the proposal, as separate species, of two encapsulating
speciesTrichinella nelsoniand Trichinella nativa(Britov and Boev, 1972). These pub-
lications led to even greater research activity across a broad front which added greatly
to the biological and morphological characterization of increasing numbers ofTrichinella
isolates.

With the exception of the non-encapsulating species, the usual morphological criteria
(Table 1) for separating helminth species have not proved adequate for speciatingTrichinella
(Dick, 1983; Lichtenfels et al., 1983; Pozio et al., 1992a). However, an interesting observa-
tion on the sperm structure ofT. spiraliswas reported by Hulinska and Shaikenov (1983),
who reported that in contrast toT. nativaandT. pseudospiralis, T. spiralissperm are sur-
rounded by a tubular sheath with evaginations that form tubules in the cytoplasm. Other
distinctions observed were associated with the sperm plasmalemma and number of mito-
chondria. These differences may affect the ability of some species to interbreed, although
this needs verification.

A plethora of molecular techniques have been generated in recent years for differentiating
Trichinellagenotypes (Mydynski and Dick, 1985; Zarlenga and Barta, 1990; La Rosa et al.,
1992), culminating most recently in the development of multiplex (Zarlenga et al., 1999)
and cytochrome oxidase I-based (Nagano et al., 1999) PCR tests. Initial work focused
on the cloning of the ribosomal DNA (rDNA) repeat fromTrichinella genotypes (Boyd
et al., 1989; Zarlenga and Murrell, 1989), though information had been presented earlier
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showing genetic variability within the genus using restriction fragment length polymor-
phisms (RFLP) (Chambers et al., 1986) and Southern blotting of the rDNA (Dame et al.,
1987). Boyd et al. (1989) cloned and mapped restriction enzyme differences within both the
intergenic and the gene encoding regions of the rDNA repeat fromT. spiralis, T. pseudospi-
ralis and what is now known to beT. nativafrom arctic fox. This was the first study that fo-
cused on variation within the internal transcribed spacer (ITS) regions in this genus. Zarlenga
and Murrell (1989) followed by generating characteristic rDNA-based, Dra I-generated
RFLP banding patterns primarily for use in a diagnostic key to differentiateT. spiralis, T.
pseudospiralis, T. nativa, T. nelsoniand the more recently namedTrichinella murrelli (for-
merly T-5) that were used also as important components in the separation of this genus into
at least five species.

The paradigm ofTrichinella taxonomy changed convincingly after the publication of a
series of detailed and thorough comparative studies (biological and biochemical) on 300
Trichinella isolates from the InternationalTrichinella Reference Centre (ITRC) by Pozio
et al. (La Rosa et al., 1992; Pozio et al., 1992a,b). These studies clarified much of the
confusion surrounding the vast accumulation of data on host infectivity studies, temper-
ature tolerances and introduced important new data on biochemical characteristics. The
resulting scheme retainedT. spiralissensu stricto,T. nativa, T. pseudospiralis, restrictedT.
nelsonito include only isolates from equatorial Africa and established an additional species,
Trichinella britovi.

In addition to these five species, Pozio et al. (1992a) recognized three unique groups of
isolates or genetic types (termed T-5, T-6 and T-8) for which insufficient information was
available to determine their systematic status. Subsequently, a large number of isolates of
T-5 from sylvatic carnivores of North America was studied (Minchella et al., 1989; Snyder
et al., 1993) and deposited in ITRC (Pozio et al., 1989; La Rosa et al., 1992). Studies at the
ITRC have recently led to the establishment of a sixth species,T. murrelli (Pozio and La
Rosa, 2000), for the species in wildlife in the temperate regions of North America previously
designated T-5. The status of T-6, a genetic type similar toT. nativa, parasitic in temperate
Nearctic wildlife, but with a lower level of resistance to freezing and distinct molecular
differences, is not yet resolved (Bandi et al., 1995; Pozio et al., 1992a). T-8 is most closely
related toT. britovi, but it is not resistant to freezing and occurs only in wildlife in South
Africa (Bandi et al., 1995; Wu et al., 1998, 1999; Pozio et al., 1992a). A ninth genotype,
T-9, has been identified in Japanese wildlife (Nagano et al., 1999).

A seventh species, the second with non-encapsulating muscle larvae, was recently dis-
covered in domestic and sylvatic swine of Papua New Guinea. It has been described as
Trichinella papuaeby Pozio et al. (1999). In addition to lacking a cyst in the muscle stage,
the muscle larvae are 1/3 longer than those ofT. pseudospiralis, it is not infective for birds
and it has distinct sequence differences in the expansion segment V of the large subunit of
the rDNA gene.

The following sections review the important biological, morphological and biochemi-
cal/molecular characteristics of the seven species and three genetic phenotypes of uncertain
taxonomic status (T-6, T-8 and T-9). Concluding remarks include a summary of the di-
agnostic characteristics of the species in the form of a diagnostic key to species. A more
complete summary of the major morphological, biological and molecular species characters
is presented in Table 1.
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2. Distinctive species characteristics

For a detailed and comprehensive description of the species ofTrichinella, particularly
synonyms, biochemical, molecular and morphological features, the reader is referred to
Pozio et al. (1992a,b, 1999), and Pozio and La Rosa (2000). The following discussion fo-
cuses on those aspects that uniquely identify species of the genusTrichinella and provide
characters for diagnostic differentiation. Emphasis is placed on biological characteristics
which provide adaptive significance, rather than morphological distinctions, which are few.
Chief among the biological distinctions are host range and temperature tolerances. Distin-
guishing molecular/biochemical markers are also indicated. The intent is to familiarize the
reader with not only those features that distinguish the various species, but also to highlight
those traits that govern important epidemiological characteristics (Table 2).

2.1. T. spiralis (Owen, 1835)

Prior to the events described above, this genus consisted of only one species,T. spiralis
(syn. T-1), with a very wide host range. The synanthropicT. spiralisis now widely recog-
nized to be the only species with high infectivity for domestic pigs (S. scrofa), commensal
rats (Rattusspp.) and mice (Mus musculus). This biological hallmark has been demonstrated
by numerous authors (Nelson and Mukundi, 1963; Kozar and Kozar, 1965; Britov, 1974;
Chadee and Dick, 1982; Kjos-Hanssen, 1984; Murrell et al., 1985, 1986; Kapel et al., 1998;
Webster et al., 1999). Importantly,T. spiralisis also infective to sylvatic hosts, particularly
wild boars, bears, and rodents, making the potential for wild animals as reservoirs for swine
trichinellosis real (Dame et al., 1987; Murrell et al., 1987). More recentlyT. spiralishas
been identified in North American red foxes and coyotes (Appleyard et al., 1996). This is
a trait that must be considered in determining the feasibility of any proposed eradication
program.

T. spiralishas a higher newborn larvae production in vitro (>90 larvae/72 h) than other
species of the genus (Table 1); all other species under similar in vitro conditions produce
fewer than 60 larvae/72 h (Pozio et al., 1992b).T. spiralisalso is the least freeze-resistant
species; at−30◦C, T. spiralis larvae are killed within 12 h in mouse muscle (Pozio et al.,
1994), and within 48 h at−20◦C (Martinez-Fernandez et al., 1998).

T. spiraliscan be identified by several biochemical and molecular characters. This species
is specifically characterized by six unique allozyme banding patterns generated by ACP,
ALAT, EST, GLDH, PGM and SOD (La Rosa et al., 1992). This pattern was verified in
61 geographical isolates. Parasites of this species specifically bind repetitive DNA probes
such as the pPRA (Klassen et al., 1986), pBP2 (Dame et al., 1987) and pT1.6 (La Rosa
et al., 1994). Furthermore, they can be identified by a characteristic, single 173 bp PCR
fragment via multiplex PCR (Zarlenga et al., 1999) and by a characteristic, single 444 bp
PCR fragment using the primer set SB4-2 (Wu et al., 1997). Within the PCR-amplified,
mitochondrial DNA (mtDNA) derived, cytochrome oxidase I (COX I) gene, a panel of
four restriction fragments 22, 70, 126 and 201 bp in length are generated by Mse I digestion
(Nagano et al., 1999). OtherT. spiralismolecular markers (using restriction fragment length
polymorphism-RFLP) (Zarlenga et al., 1991) and random amplified polymorphic DNA
(RAPD)-derived primers (Wu et al., 1998, 1999) have also been established.
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2.2. T. nativa (Britov and Boev, 1972)

This species (syn. T-2) appears to be confined to the arctic and subarctic zones of the
Holarctic region.T. nativais relatively common among bears, foxes, and dogs in this region
and is reported from a wide variety of other mammals including wild boars, mustelids,
felids, walrus, and seals (Rausch et al., 1956; Kjos-Hanssen, 1984; Roth, 1950; Madsen,
1961). However, in contrast toT. spiralis,T. nativahas very low infectivity for swine and rats
(Dick, 1983; Murrell et al., 1986; Dame et al., 1987; Pozio et al., 1992b; Kapel et al., 1998).
An outstanding distinguishing feature of this species is the high resistance of muscle larvae
to freezing (Dick, 1983; Smith, 1983; Pozio et al., 1992b, 1994). Although this resistance is
influenced by host species (Dick, 1983), the ability to withstand freezing presents a hazard
to people who consume game such as bears. The distribution ofTrichinella species and
genotypes appears to be correlated with the environmental temperature (Shaikenov and
Boev, 1983; Pozio et al., 1992b, 1994), and forT. nativa, the limiting southern isotherm is
−5◦C in January (Pozio et al., 1996, 1998).

T. nativacan be uniquely characterized by two allozyme markers, ME and 6PGD which
were found in at least 19 geographical isolates (La Rosa et al., 1992).T. nativaalso can be
identified by specifically binding the pT2.13 repetitive DNA probe generated by La Rosa
et al. (1994) though some very weak hybridization was observed in Southern blots of one
isolate each ofT. britovi andT. nelsoni. T. nativacan be also identified by a characteristic,
single 127 bp PCR fragment via multiplex PCR (Zarlenga et al., 1999) and by simultaneous
restriction enzyme digestion of COX I amplified mtDNA using Mse I and Bsp 1286 which
generates two restriction fragments of 13 and 57 bp in length (Nagano et al., 1999). Wu
et al. (1999) and Zarlenga et al. (1991) have used molecular techniques to generate other
markers as well.

2.3. T. britovi (Pozio et al., 1992)

This species (syn. T-3), relatively common in sylvatic carnivores in Eurasia, has been
recovered from a wide range of hosts, including carnivores (canids, felids) and bears and
occasionally wild boars, horses, domestic pigs and man. Because its morphological and
biological features are similar to that ofT. spiralis, it is not surprising that it was only
recently recognized as a separate species (Pozio et al., 1992a). It is distinct fromT. spiralis
in its low infectivity for rats, greater resistance to freezing, and moderate infectivity for
swine, slow nurse cell development and low in vitro production of newborn larvae (Table 1).
AlthoughT. britovi may infect domestic pigs and horses (Kapel and Gamble, 2000; Pozio,
1998) and can serve as a source of infection to humans, its transmission is primarily among
sylvatic hosts, probably due to its poor reproductive capacity in swine and synanthropic
rodents (Table 1), thereby limiting transmission from wild animals to hosts associated with
humans (Pozio, 1998).

T. britovi can be identified by a single unique allozyme ACP, and this was observed
to be consistent in over 60 isolates ofT. britovi examined by La Rosa et al. (1992). This
same species specifically binds the pT3.4 repetitive DNA probe generated by La Rosa et al.
(1994). Minor cross-hybridization with genotypeTrichinella T-8 is partial foundation for
the phylogenetic relationship betweenTrichinella T-8 andT. britovi (La Rosa and Pozio,
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2000).T. britovi can also be identified by two characteristic PCR fragments migrating at
127 and 253 bp in multiplex PCR (Zarlenga et al., 1999). As with the DNA probe of La
Rosa et al. (1994), multiplex PCR does not differentiate betweenT. britovi andTrichinella
T-8. T. britovi can also be identified by a panel of five restriction fragments migrating at
22, 62, 64, 70 and 201 bp in length following Mse I digestion of COX I amplified mtDNA
(Nagano et al., 1999). Mse I digestion, as with the DNA probe pT3.4 and multiplex PCR,
cannot distinguishT. britovi from TrichinellaT-8; however, this can be accomplished with
an additional restriction enzyme digestion using Alu I which generates two restriction
fragments 36 and 113 bp in length (Nagano et al., 1999). Additional molecular markers
have also been established by Wu et al. (1998, 1999) and Zarlenga et al. (1991).

2.4. T. nelsoni (Britov and Boev, 1972), sensu stricto (Pozio et al., 1992a)

This parasite (syn. T-7) occurs throughout equatorial Africa. Its host range includes
primarily Hyaenidae and Felidae and occasionally Suidae and man. In most biological
characteristics, this species is similar toT. spiralis, T. britovi andT. murrelli. However, it
is distinguished biologically fromT. spiralis in its low reproductive capacity in pigs and
rats, low newborn larvae production in vitro and extended nurse cell development in mice
(Table 1). UnlikeT. britovi andT. nativa, T. nelsonihas very low resistance to freezing.

This species appears to be unusually tolerant to high temperatures (Table 1), perhaps a
reflection of its adaptation to a warm climate (isotherm 30◦C). In distinction to all other
species its muscle larvae may survive up to 60 min at 56◦C, while larvae of other species are
killed within 10 min at this temperature (Boev and Sokolova, 1981). Because scavenging is a
common means by which larvae in host muscle are passed to a new host, the ability of larvae
to withstand high temperatures during host decomposition should be an adaptive advantage.

T. nelsonican be identified by three unique allozymes ADA, GLDH, and TPI that were
detected in two isolates ofT. nelsoni(La Rosa et al., 1992). This species specifically binds the
pT7.3 repetitive DNA probe generated by La Rosa and Pozio (2000). Alternatively,T. nelsoni
can also be identified by two characteristic PCR fragments migrating at 155 and 404 bp in
multiplex PCR (Zarlenga et al., 1999) and by a PCR restriction fragment 223 bp in length
following Mse I digestion of COX I amplified mtDNA (Nagano et al., 1999). Additional
molecular markers have been generated by Wu et al. (1998, 1999) and Zarlenga et al. (1991).

2.5. T. murrelli (Pozio and La Rosa, 2000)

This species, recently described by Pozio and La Rosa (2000), was formerly identified as
an infrasubspecific population, T-5, for North American isolates from wild animals (Pozio
et al., 1992a). Sylvatic hosts include carnivores, and occasionally the parasite has been
found in horses and people. Although this species is most similar toT. britovi, it is easily
distinguished from other species by certain molecular features. As with all sylvatic species,
T. murrelli has a very low reproductive capacity in pigs (much lower thanT. britovi) and
rats, low newborn larvae production in vitro, a very extended nurse cell development time
and no resistance to freezing (Table 1). Cross breeding experiments demonstrated that this
species is reproductively isolated from the other species (Pozio and La Rosa, 2000). This
species is sympatric with a variant (T-6) ofT. nativa. Its northern boundary is probably
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related to an isotherm of−6◦C in January, but its southern boundary (Mexico, Central and
South America) is yet to be determined.

T. murrelli has yet to be characterized by any unique allozyme. At least 27 allozymes
and 32 isolates have been tested and thus far the species can only be identified by several
molecular characters (Pozio and La Rosa, 2000). Parasites of this species specifically bind
the pUPB 3.7 repetitive DNA probe generated by Zarlenga et al. (1991). Further,T. murrelli
genomic DNA generates two characteristic PCR fragments migrating at 127 and 316 bp
via multiplex PCR (Zarlenga et al., 1999) and three additional PCR restriction fragments
92, 126 and 201 bp by Mse I digestion of COX I amplified mtDNA (Nagano et al., 1999).
Zarlenga et al. (1991) and Wu et al. (1998, 1999) have produced several other markers for
differentiatingT. murrelli.

2.6. T. pseudospiralis (Garkavi, 1972)

This species (syn. T-4) was the first non-encapsulatingTrichinelladiscovered (Garkavi,
1972).T. pseudospiralisis notable not only for the lack of nurse cell generation in the host,
but also for its ability to infect both birds (carnivorous or carrion-eating) and mammals
(marsupials, rodents, carnivores, swine and occasionally, humans). In addition to these
marked characteristics,T. pseudospiralisis also dissimilar to other species by a smaller
length in larvae and adults (Table 1), moderate reproductive capacity in rats, and, with
T. britovi, moderate reproductive capacity in pigs (Kapel and Gamble, 2000) and in wild
boars (Kapel, 2000). In recent years, human outbreaks from swine have been reported
(Jongwutiwes et al., 1998; Britov, 1997).

T. pseudospiraliscan be identified by 12 unique allozymes ACP, ADA, ALAT, ALDO,
GPD, LDH, EST, G6PD, GLDH, GOT, SOD and TPI of 27 examined; however, only two
isolates ofT. pseudospiraliswere used to generate the allozyme profile (La Rosa et al.,
1992). This species specifically binds the pTsp 5.32 repetitive DNA probe generated by
Lindsay et al. (1995) and is further characterized by one or more bands migrating in the
300–360 bp range when used to analyze three isolates ofT. pseudospiralisfrom Caucasus
(Palearctic region), Tasmania (Australian region) and Alabama (Nearctic region) (Zarlenga
et al., 1996, 1999).T. pseudospiraliscan also be distinguished by the presence of a 419 bp
fragment in Mse I-digested, COX I-amplified mtDNA (Nagano et al., 1999). Several other
PCR-derived techniques (Wu et al., 1997, 1999) and RFLP techniques (Zarlenga et al.,
1991) are also available for identifyingT. pseudospiralis.

2.7. T. papuae (Pozio et al., 1999)

This second non-encapsulatingTrichinella species (syn. T-10) was recently described
by Pozio et al. (1999) from a wild pig in Papua New Guinea. Experimentally, this species
can infect laboratory mice, but unlikeT. pseudospiralisit is not able to infect chickens.
Another distinguishing feature is that the length of its muscle larvae is about 1/3 greater
than those ofT. pseudospiralis. Crossbreeding experiments demonstrated thatT. papuae
cannot hybridize with otherTrichinella species. Pozio et al. (1999) suggested that the
non-encapsulating species represent a second evolutionary line and that the taxonomy of
this group may need revision at the genus level.



302 K.D. Murrell et al. / Veterinary Parasitology 93 (2000) 293–307

T. papuaehas been analyzed only by the multiplex PCR test of Zarlenga et al. (1999). The
recency of the discovery of this species has not yet permitted analysis by other methods to
determine additional molecular markers. The PCR amplification of the ESV of an isolate of
T. papuaeusing the primer set I produced a unique fragment of 240 bp (Pozio et al., 1999).

2.8. Genotypes of uncertain taxonomic status

TrichinellaT-6 has not yet been assigned a taxonomic position because of its biological
and genetic similarity toT. nativa. As reported forT. nativa, larvae ofTrichinella T-6
are highly resistant to freezing in muscles of carnivores (up to 34 months) (Worley et al.,
1986). Isolates belonging to this genotype have been identified only in sylvatic hosts from
Idaho, Montana, Ontario and Pennsylvania (Pozio, 2000) and have been found to interbreed
(experimentally) withT. nativa(Pozio, unpublished data). As a result, identification of this
genotype can be accomplished only by using a single unique allozyme, ACO (La Rosa
et al., 1992), and PCR differentiation between T-6 andT. nativais problematic (Appleyard
et al., 1999). However, the multiplex PCR test of Zarlenga et al. (1999) generates two
characteristic fragments that migrate at 127 and 210 bp on agarose gels. The RAPD-derived
PCR test of Nagano et al. (1999) does not produce the 57 bp fragment characteristic ofT.
nativa that is generated following Mse I and Bsp 1286 I digestion. Additional molecular
markers have also been established (Wu et al., 1999; Zarlenga et al., 1991).

Trichinella T-8 consists of only three isolates from sylvatic carnivores of South Africa
and Namibia. This genotype is capable of interbreeding withT. britovi under laboratory
conditions (La Rosa and Pozio, 2000). No unique allozyme distinguishes this genotype (La
Rosa et al., 1992); however,Trichinella T-8 can be distinguished by specifically binding
the pT8.3 repetitive DNA probe generated by La Rosa and Pozio (2000) and can also be
characterized by PCR restriction fragments migrating at 66, 149 and 204 bp following Alu
I restriction enzyme digestion of PCR-amplified COX I mtDNA (Nagano et al., 1999). Wu
et al. (1999) have produced other molecular markers to distinguish this genotype.

TrichinellaT-9 is related toT. britovi and interbreeding has been observed under labora-
tory conditions (Pozio, unpublished data). Two isolates from sylvatic carnivores of Japan
(Nagano et al., 1999), and previously identified asT. britovi (Pozio et al., 1996) constitute
this genotype. This genotype can be identified by two Ssp I restriction fragments, 650 and
1500 bp in length, originating from the gene encoding the 43 kDa ES antigen digested with
(Wu et al., 1999) and two fragments, 92 and 327 bp in length, following Mse I digestion of
PCR amplified COX I mtDNA (Nagano et al., 1999).

An interesting isolate ofTrichinella from Crocodylus niloticushas been reported from
farmed crocodiles in Zimbabwe (Mukaratirwa and Foggin, 1999). Because this isolate
has yet to be identified to species, its systematic status is uncertain, but recent studies
have found it to be highly infective for rats and pigs (Mukaratirwa and Foggin, 1999).
Rarely, small intracellular nematodes other thanTrichinella larvae may be found in the
muscles of vertebrates including man (Andrews et al., 1997). An interesting example in
man was described recently in Australia that apparently involved a dual infection with
Trichinella (Andrews et al., 1997) and a new nematode (Haycocknema perplexum) of the
family Robertdollfusidae (Spratt et al., 1999). Because nematodes other than these, such
asAncylostomaandDracunculus, may rarely be found in myofibers, the morphological
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features and/or molecular identification of such larvae must be carefully determined (Spratt
et al., 1999). It should also be recognized that, under certain conditions, some reptiles can
be rendered susceptible toTrichinella. Cristen and Perian (1999) reported that vipers, held
at 37–39◦C, could be experimentally infected with an unidentified species ofTrichinella;
interestingly, the larvae at 30 days post-infection were unencapulsated in the muscle.

3. Discussion

Reservations about the species level systematics (Dick, 1983; Bessonov, 1998) of the
genusTrichinella have been related to concerns about the possibility of gene flow among
the “species” (Pozio et al., 1995, 1997). While there is no single definition of what constitutes
a species, from both a philosophical and practical viewpoint, it is desirable to be able to
distinguish between populations that are unique with little or no gene flow between them and
populations where sufficient gene flow exists so that shared characteristics can be expected.
In addition to the evidence provided by the controversial, but frequently used experimental
mating tests for reproductive isolation among species ofTrichinella, arguments have been
made that populations that maintain, in sympatry, the degree of differences described among
species of this genus, must be considered to be species by definition (Mayr, 1969; Pozio
et al., 1992a). However, doubt has existed about whether the species were in true sympatry
because of limited possibilities for mating in nature between two populations due to a short
adult intestinal phase and strong immunity to reinfection (Pozio et al., 1992a). Recently,
however, several examples of naturally-occurring multiple species infections have been
discovered (Pozio et al., 1995, 1997; Pozio, 2000). These observations that more than one
species of muscle larvae are occasionally found in a single host provide strong evidence for
sympatry for a number of these species.

Because of this, we have considered whether a population of muscle larvae might be
similar to a clone of protozoan organisms. However, nematodes of this genus reproduce
sexually and have hologonic reproductive organs in both males and females. Hologonic
gonads have a germination zone for gametes that runs the entire length of the organ, in
contrast to all of the gametes originating from a single cell (telogonic gonads) as in most
nematodes (Chitwood and Chitwood, 1950). Individual nematodes with hologonic gonads
have been shown to be capable of producing significantly different sized eggs, suggestive
of a higher level of genetic variability among gametes from hologonic gonads than from
telogonic gonads. The hologonic gonad may be hypothesized to be an adaptation to increase
genetic variability in nematodes with adult populations that are small in numbers or in
reproductive life span. Because of this unusual reproductive feature,Trichinella larvae in
a single host may be more genetically variable than one might expect if telogonic gonads
were involved. This is an area that needs further investigation.

A second area needing substantially more study is the application of biochemical and
molecular characters to phylogenetic studies on the genusTrichinella. In 1992, La Rosa
et al. (1992) were the first to generate a dendrogram based upon unweighted pair group
method of analysis (UPGMA) of isoenzyme data from a large investigation involving over
152 isolates and 27 enzyme systems. These data were combined with other biological
and biochemical data in the construction of a new taxonomic structure for this parasite
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group (Pozio et al., 1992a,b). Two years later, several groups (Bandi et al., 1995; Arribas
et al., 1994; Dupouy-Camet et al., 1994) attempted to use random amplified polymorphic
DNA (RAPD) to generate datasets for UPGMA comparisons. Comparison of the results
from these studies suggested that the conditions for RAPD-PCR and choice of primers
could drastically affect data acquisition and complicate assessment of similarities among
genotypes. It was not until 1998 that Zarlenga (1998) constructed a dendrogram based upon
distance algorithms and DNA sequence alignment data fromTrichinella mitochondrial,
large subunit, ribosomal DNA, that was substantially congruent with the conclusions drawn
from the isoenzyme data. Unfortunately, UPGMA does not address data in a manner that
assesses evolutionary relationships among parasites within the genus, but looks only at the
similarities and/or differences to group the organisms. Given the uniqueness of this genus,
namely, that all genotypes are readily available for analysis and that multiple isolates of
each genotype can be easily propagated under laboratory conditions, it is clear that a unique
opportunity exists to perform an in-depth study of both interspecific as well as intraspecific
variation within the genusTrichinella. Such a study will not only require the generation of
new datasets from other gene systems, but a re-evaluation of existing data, as well. Such a
compilation of information will eventually permit us to construct a phylogenetic tree based
upon more accepted practices for assimilating genotypic interrelationships, i.e. parsimony
or maximum likelihood analyses.
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